PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging

Haut.AI
December 11, 2023
2 min

Aging biomarkers are the qualitative and quantitative indicators of the aging processes of the human body. Estimation of biological age is important for assessing the physiological state of an organism. The advent of machine learning lead to the development of the many age predictors commonly referred to as the “aging clocks” varying in biological relevance, ease of use, cost, actionability, interpretability, and applications. Here we present and investigate a novel non-invasive class of visual photographic biomarkers of aging. We developed a simple and accurate predictor of chronological age using just the anonymized images of eye corners called the PhotoAgeClock. Deep neural networks were trained on 8414 anonymized high-resolution images of eye corners labeled with the correct chronological age. For people within the age range of 20 to 80 in a specific population, the model was able to achieve a mean absolute error of 2.3 years and 95% Pearson and Spearman correlation.

Authors:Bobrov E, Georgievskaya A, Kiselev K, Sevastopolsky A, Zhavoronkov A, Gurov S, Rudakov K, del Pilar Bonilla Tobar M, Jaspers S, Clemann S. PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging (Albany NY).

Source:https://doi.org/10.18632/aging.101629

No items found.
Navigation
Share post

Latest Researches

Explore more

Get in touch

Have questions or want to explore a partnership? Fill out the form and our team will get back to you shortly.
Please read our Privacy Note
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
We know your skin
Send us an e-mail
team@haut.ai
Press request
press@haut.ai
© Copyright Haut.AI 2025.
Privacy Notice and Terms & Conditions
Privacy Policy Cookie Policy